
DATA SERVICES AT RACKSPACE SERIES
Pre-aggregated analytics and social feeds using MongoDB

JON HYMAN
Co-Founder and CIO

Appboy

GREG AVOLA
CTO, Co-Founder

and Developer

Untappd

KENNY GORMAN
Founder of ObjectRocket

Chief Architect

Rackspace

J.R. ARREDONDO
Director, Product Marketing

Rackspace

RACKSPACE® HOSTING | WWW.RACKSPACE.COM 2

Data Services at Rackspace

2

2 acquisitions for
MongoDB and Redis apps

2 offerings in partnership
with Hortonworks for Hadoop-based

applications

Strong portfolio of
traditional offerings

RACKSPACE® HOSTING | WWW.RACKSPACE.COM 3

The right tool for the right job

Relational Documents Key-value Distributed
large sets

Data
Integrity

SQL

Flexible
Schema

Scale

Fast
Retrieval

Data

structures

(MongoDB) (Redis)

Distributed
Processing

Big Data

(Hadoop)

RACKSPACE® HOSTING | WWW.RACKSPACE.COM 4

What is ObjectRocket?
Think about 4 “S”

A fully managed
MongoDB service that

is purpose-built to be
highly available,

automatically sharded,
and very fast.

RACKSPACE® HOSTING | WWW.RACKSPACE.COM 5

ObjectRocket high level summary
Think about 4 “S”

SCALABILITY Automatically sharded (all you have to do is select a shard key)

Multiple plans, starting at 1GB with no sharding to custom plans

Choice of regions: US East, US West, London (Sydney and Hong Kong coming up)

AWS Direct Connect or Rackspace ServiceNet

SPEED Purpose-built design optimized for MongoDB

Fusion-IO storage for high throughput

Container-based architecture

SAFETY Smart provisioning to reduce the possibility of downtime

Redundancy and automatic backups

Security: ACLs, MongoDB authentication, SSL termination, encrypted replication links

SUPPORT Deep MongoDB expertise

Monitoring

Migration Services

RACKSPACE® HOSTING | WWW.RACKSPACE.COM

Who is speaking to you today?

Jon Hyman (Appboy)

Appboy addresses the rising need of apps to
keep audiences engaged. By bringing data-driven

marketing automation, segmentation, multi-
channel messaging and mobile marketing experts

together, Appboy has become the pioneer of
Mobile Relationship Management. Co-Founder

and CIO Jon Hyman is responsible for the
infrastructure behind the tools designed for app
developers to segment users by behavior and

deliver personalized, relevant content to them via
multi-channel messaging, helping to increase

engagement and understanding within the app.

Greg Avola (Untappd)

Untappd is a new way to socially share and
explore the world of beer with your friends and the
world. Living in the craft beer haven of New York
City, Greg is the backend developer for Untappd.
After experiencing Rare Vos for the first time, he
instantly fell in love with craft beer. While some

people enjoy reading books or watching movies,
Greg's passion is to code. That being said, after
Tim and Greg came up with the idea of Untappd,
Greg had a working prototype the next day. Being
able to combine his passion for development and

craft beer allowed Untappd to be born.

Appboy and MongoDB
Jon Hyman
MongoDB & ObjectRocket Webinar, Feb. 12, 2014

@appboy @jon_hyman

A LITTLE BIT ABOUT
US & APPBOY

Jon Hyman
CIO :: @jon_hyman

Appboy is an app marketing
automation platform for apps

(who we are and what we do)

Harvard
Bridgew
ater

Appboy improves
engagement by helping you
understand your app users

• IDENTIFY - Understand demographics,

social and behavioral data

• SEGMENT - Organize customers into

groups based on behaviors, events, user

attributes, and location

• ENGAGE - Message users through push

notifications, emails, and multiple forms of

in-app messages

Use Case: Customer engagement begins with onboarding

Urban Outfitters textPlus Shape Magazine

Agenda

• How flexible schemas make storing arbitrary
data super easy

• How to quickly store time series data in
MongoDB using flexible schemas

• Learn how flexible schemas can easily
provide breakdowns across dimensions

Flexible Schemas, Part 1:

EXTENSIBLE USER PROFILES

Extensible User Profiles
Appboy creates a rich user
profile on every user who opens
one of our customers’ apps

Extensible User Profiles
We also let our customers add their own custom
attributes

Extensible User Profiles

{
 first_name: “Jovan”,
 email: “jovan+demo@appboy.com”,
 dob: 1994-10-24,
 gender: “F”,
 country: “DE”,
 ...
 }

Let’s talk schema

Extensible User Profiles

{
 first_name: “Jovan”,
 email: “jovan+demo@appboy.com”,
 dob: 1994-10-24,
 gender: “F”,
 custom: {
 has_avatar: true,
 highest_score: 1000,
 visited_website: false,
 ...
 },
 ...
 }

Custom attributes can go alongside other fields!

db.users.find(…).update({$set: {“custom.has_avatar”:true}})

Extensible User Profiles
• Pros
• Easily extensible to add any number of fields
• Don’t need to worry about type (bool, string, integer, float, etc.): MongoDB

handles it all
• Can do atomic operations like $inc easily
• Easily queryable, no need to do complicated joins against the right value

column

• Cons
• Can take up a lot of space “this_is_my_really_long_custom_attribute_name_weeeeeee”

• Can end up with mismatched types across documents
{ visited_website: true }
{ visited_website: “yes” }

Extensible User Profiles - How to Improve the Cons

Space Concern

Tokenize values, use a field map:

{
 first_name: “Jovan”,
 email: “jovan+demo@appboy.com”,
 dob: 1994-10-24,
 gender: “F”,
 custom: {
 0: true,
 1: 1000,
 2: false,
 ...
 },
 ...
 }

{
 has_avatar: 0,
 highest_score: 1,
 visited_website: 2
}

You should also limit the length of values

Extensible User Profiles - How to Improve the Cons

Type Constraints

Handle in the client, store expected types in a map
and coerce/reject bad values

{
 has_avatar: Boolean,
 highest_score: Integer,
 favorite_color: String
}

• MongoDB is probably the best tool
you can use for custom attributes

• Just as simple to CRUD as any
other field on the document

• Be sure to handle space and type
concerns

Extensible User Profiles Summary

Flexible Schemas, Part 2:

PRE-AGGREGATED ANALYTICS

What kinds of analytics does Appboy track?
• Lots of time series data
• App opens over time
• Events over time
• Revenue over time
• Marketing campaign stats and efficacy over time

What kinds of analytics does Appboy track?

• Breakdowns*
• Device types
• Device OS versions
• Screen resolutions
• Revenue by product

* We also care about this over time!

Typical time series collection

Log a new row for each open received

{
 timestamp: 2013-11-14 00:00:00 UTC,
 app_id: App identifier
}

db.app_opens.find({app_id: A, timestamp: {$gte: date}})

Con: You need to aggregate the data before
drawing the chart; lots of documents read into
memory, lots of dirty pages

Pro: Really, really simple. Easy to add attribution to users.

Fewer documents with pre-aggregation iteration 1

Create a document that groups by the time period

 {
 app_id: App identifier,
 date: Date of the document,
 hour: 0-23 based hour this document represents,
 opens: Number of opens this hour
 }

db.app_opens.update({date: D, app_id: A, hour: 0}, {$inc: {opens:1}})

Con: We never care about an hour by itself. We lose attribution.

Pro: Really easy to draw histograms

Fewer documents with pre-aggregation iteration 2
Create a document by day and have each hour be a field
 {
 app_id: App identifier,
 date: Date of the document,
 total_opens: Total number of opens this day,
 0: Number of opens at midnight,
 1: Number of opens at 1am,
 ...
 23: Number of opens at 11pm
 }

 db.app_opens.update(
 {date: D, app_id: A},
 {$inc: {“0”:1, total:1}}
)
Pro: Document count is low, easy to use aggregation framework for

longer spans, fast: document should be in working set

Fewer documents with pre-aggregation iteration 2

• What about looking at different dimensions?

• App opens by device type (e.g., how do iPads

compare to iPhones?)

• Demographics (gender, age group)

Solution!

FLEXIBLE SCHEMAS!

Fewer documents with pre-aggregation iteration 3
Dynamically add dimensions in the document

Pre-aggregated analytics
• Pros
• Easily extensible to add other dimensions
• Still only using one document, therefore you can create
charts very quickly

• You get breakdowns over a time period for free

• Cons
• Pre-aggregated data has no attribution
• Have to know questions ahead of time
• Not infinitely scaleable
• Timezones are awful problems to deal with

Pre-aggregated analytics summary

• Get started tracking time series
data quickly

• You get breakdowns for free
• Adding dimensions is super simple
• No attribution, need to know
questions ahead of time

• Don’t just rely on pre-aggregated
analytics

Working with ObjectRocket
• Knowledgable, MongoDB experts
• Helped us scale to many billions of data
points each month

• Support is top-notch, response times are
wicked fast (and they stay on top of
MongoDB, Inc. when tickets get escalated)

• Great for cost: 3 full nodes (not 2 and 1
arbiter), backups included, good step-wise
pricing model as you add more shards

Thanks! Questions?
jon@appboy.com

@appboy @jon_hyman

Experiences with MySQL and
MongoDB in a social app

Who am I?

Live in NYC

Day-time Job: Web Developer
at ABC News (US)

Night-time Job: CTO, Co-
Founder of Untappd

Loves: Data, Beer and
Javascript

What is Untappd?
A social discovery and sharing network for beer drinkers

What is Untappd?
Users “check-in” to their beers, add their location, a photo,
rating, comment and then share it with their friends

What is Untappd?
Using GPS, Untappd will find local and popular bars, beers
and breweries nearby, where ever you are!

What are we going to talk about?

MongoDB and MySQL together

• Faster joins for friends feeds
• Solving contention issues during high traffic times
• Location data, first class citizen in MongoDB
• Data Modeling differences

Improving on MySQL with MongoDB

Scaling with ObjectRocket

MySQL and MongoDB together

It’s not one or the other
• What works best for the

workflow?
– MySQL worked best for

reference data for us
– Not everything moved to

MongoDB

What stayed in MySQL?

Check-ins

Users
Relationships Data
Primary Datastore

What moved to MongoDB?

Activity Feed (Friend’s Graph)
Recommendation Data

Location-based Check-ins

Faster joins in Friends Feed
Background: Relational queries
(2-5 seconds per query)
• Worked well when we were

small
• Friends became important as

we grew
• Growth in user base affected

query performance
• Friends feed

– First thing people see in app
– Speed is important
– Two rows for every friendship
– You don’t want to wait

Saturday night at the bar!

Today: MongoDB queries
(0.3-0.5 seconds per query)

• Friends become important
• “Schema-less” design
• One query to one collection

with a shard key
• More consumable by others

who develop on top of API
– JSON

Single query, not
multiple joins

Contention issues in MySQL

• Our activity is compressed to
weekends and nights
– Always looking for the next

bottleneck
• Keep looking for ways to

streamline our process
– Use MongoDB and MySQL for

best performance
• Improving Efficiency with

Paging

• Two key scenarios
– Loading of friends feed
– Checking on a beer

• Initially found lock contention
– Moved data to MongoDB

We were averaging around 7-8k queries
per second per box without MongoDB.
After migration, we dropped to around

2-3k queries per box.

Built for the Weekend
Need for Speed and
Performance

Location data in MongoDB

Query: “Who is nearby?”
• Location data in MongoDB

– Anything with a GPS location
is moved to MongoDB
(outside of friends)

– Queries such as “Who is
nearby?” become easy

– Gets really complicated with
beer

– LAT/LONG attached
– It is not like a location

Query: “What beers are
available close to me?”
• Geospatial index

– What beers are popular in my
area?

– What bars are trending in my
area?

– Unique users checking into a
location

• Queries look like English
– NEAR
– SQL queries can go bad fast
– Location is a first class citizen

in MongoDB

Data Modeling

Modeling with MongoDB
• Struggled initially storing beers
• Handling two data sources

with volatile data can be dificult
• Use of TTL

– Documents expiration
– You are not looking at what

your friends were drinking
weeks ago

Handling Updates
• Identifying which fields can can

MySQL to back-fill
• Deletion Scripts with Message

Queues to increase
performance

• TTL helps with older records

Scaling with MongoDB and ObjectRocket

• History
– Started with 5GB plan
– Two: 100GB and 20GB
– 100GB holds Activity Feed Data, while 20GB

holds recommendations and location data
• Huge performance gains moving to the

ObjectRocket architecture

In Summary

• Use MySQL and MongoDB for the right jobs
• Look for opportunities to improve query speed
• Think of complicated MySQL features that are

easy in MongoDB
– Dynamic schema
– Location data
– Queries

• Scalability

Thank you!

greg@untappd.com
untappd.com/user/gregavola

RACKSPACE® HOSTING | WWW.RACKSPACE.COM

Q&A

RACKSPACE® HOSTING | WWW.RACKSPACE.COM

• http://goo.gl/oxpsbA

I want to watch a demo of ObjectRocket

• Send an email to support@objectrocket.com

I am interested in migrating to ObjectRocket

• Twitter @objectrocket
• Send an email to support@objectrocket.com

I want to learn more about ObjectRocket

• Visit www.mongodb.com for great learning and training resources

I want to learn more about MongoDB

What should you do next?
http://www.rackspace.com/mongodb

RACKSPACE® HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78218
US SALES: 1-800-961-2888 | US SUPPORT: 1-800-961-4454 | WWW.RACKSPACE.COM

RACKSPACE® HOSTING | © RACKSPACE US, INC. | RACKSPACE® AND FANATICAL SUPPORT® ARE SERVICE MARKS OF RACKSPACE US, INC. REGISTERED IN TH E UNITED STATES AND OTHER COUNTRIES. | WWW.RACKSPACE.COM

RACKSPACE® HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78218
US SALES: 1-800-961-2888 | US SUPPORT: 1-800-961-4454 | WWW.RACKSPACE.COM

RACKSPACE® HOSTING | © RACKSPACE US, INC. | RACKSPACE® AND FANATICAL SUPPORT® ARE SERVICE MARKS OF RACKSPACE US, INC. REGISTERED IN TH E UNITED STATES AND OTHER COUNTRIES. | WWW.RACKSPACE.COM

